Mark scheme – Quantum Physics

Qu	Questio n		Answer/Indicative content	Mar ks	Guidance
1			Α	1	
			Total	1	
2			В	1	
			Total	1	
3			D	1	
			Total	1	
4			В	1	
			Total	1	
5			С	1	
			Total	1	
6			D	1	
			Total	1	
7			В	1	
			Total	1	
8			A	1	
			Total	1	
9			D	1	
			Total	1	
1 0			D	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The candidates to demonstrate their knowledge and understanding of physics.
			Total	1	
1 1			A	1	
			Total	1	

				Examiner's Comments
1 2		A	1	All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions.
		Total	1	
1 3		D	1	
		Total	1	
1 4		The emission of electrons from the surface of a metal when electromagnetic waves (of frequency greater than the threshold frequency) are incident on the metal.	B1	
		Total	1	
1 5		Diffraction (of electrons by matter)	B1	Examiner's Comments The majority of the candidates scored a mark for recalling that electron diffraction provided the key evidence for the wave-like behaviour of electrons. Two of the most frequent incorrect responses were <i>refraction</i> and the <i>photoelectric effect</i> .
		Total	1	
1		The minimum frequency of the EM waves / light / uv / photon for the removal of (surface) electron(s)	B1	Allow 'minimum / smallest frequency of EM wave to cause photoelectron emission' Not wave Examiner's Comments To gain the one mark for the threshold frequency candidates had to mention <i>electromagnetic waves</i> or <i>photon</i> and <i>minimum frequency</i> for the removal of electrons. Less than a third of the candidates gave an adequate definition. Poorer answers confused <i>threshold frequency</i> with <i>work function</i> of the metal.
		Total	1	
1 7		C	1	
		Total	1	
1 8		D	1	
		Total	1	
1 9		D	1	

		Total	1	
2 0		A	1	
		Total	1	
2		с	1	
		Total	1	
2 2		D	1	Examiner's Comments Slightly more than half of the candidates got the correct answer D in this question on the photoelectric equation. No detailed calculations were necessary here. The maximum kinetic energy of a photoelectron had to be 2.0 eV (difference between photon energy of 5.0 eV and the work function of the metal 3.0 eV), which made the value of 3.0 eV impossible. The most popular distractor was A .
		Total	1	
2 3		D	1	
		Total	1	
2 4		D	1	
		Total	1	
2 5		c	1	
		Total	1	
2 6		В	1	
		Total	1	
2 7		A	1	
		Total	1	
2 8		The <u>minimum</u> energy needed to remove an electron (from the surface of a metal)	B1	Allow work done for energy Allow photoelectron for electron Examiner's Comments This is a standard definition which candidates should be able to state. Candidates should remember that the work function is a minimum energy. There is occasionally a misconception regarding ionisation, and also some careless use of language for the removal of the electron. Words such as escape and eject are

					acceptable, but terms such as dislocation are not clear enough. The definition does not require the statement that it is from the surface of the metal this time, but that does not mean that it will not be required in the future.
			Total	1	
2 9			Α	1	
			Total	1	
3 0			В	1	
			Total	1	
3 1			D	1	
			Total	1	
3 2	а		$\lambda \left(=\frac{h}{mv}\right) = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 5.5 \times 10^5}$	C1	Examiner's Comments
2			= 1.3(2) × 10 ⁻⁹ (m)	A1	The final question was either answered very well or candidates chose an incorrect equation, often $E = \frac{\hbar c}{\lambda}$.
	b	i	Energy of a <u>photon</u>	B1	Ignore h is Planck constant and f is frequency Examiner's Comments Many candidates simply defined the symbols as opposed to the term. It was expected that candidates would state that hf was the energy of a photon.
		ï	<u>Minimum</u> energy required to remove/emit (a single) <u>electron</u> from the metal surface	B1	Ignore 'it is work function' Ignore photoelectric effect Examiner's Comments Again, a common answer was to state that ϕ represented the work function rather than defining what is meant by work function. Good candidates stated that the work function was the minimum energy needed to remove an electron from a metal surface.
			Total	4	
3 3			The rate of photons incident on M is doubled.	B1	
			The rate of emission of photoelectrons / current is doubled.	B1	
			Total	2	
3 4			$h \rightarrow J s / \frac{h \rightarrow N m}{s} / J \rightarrow kg m^2 s^{-2}$	C1	
4			" ' ' ' ' S ' ' ' → Ny III ' S	A1	

		base unit = kg m² s ⁻¹		
		Total	2	
3	a	(kinetic energy =) 1.6 × 10 ⁻¹⁹ × 300	C1	
5		$eV = \frac{1}{2}mv^2$	C1	
		$v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 300}{9.11 \times 10^{-31}}}$	C1	Note 1.05 × 10^{14} scores 2 marks; omitted square rooting
		v 9.11×10 ^{−31}	U1	Examiner's Comments
		speed = 1.03 × 10 ⁷ (m s ^{−1})	A0	Good candidates clearly showed the steps to determine the velocity. Weaker candidates found this question difficult. Clear substitution of numbers is required for these marks to be awarded.
	b	$\lambda = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.0 \times 10^7}$	C1	Allow ECF from the previous question part
				Allow 2 marks for 7.1 × 10 ⁻¹¹ , $v = 1.03 \times 10^7$ used
			54	Examiner's Comments
		λ = 7.3 × 10 ⁻¹¹ (m)	B1	This part was generally well answered although some candidates confused terms in the equation or could not deal with the powers of ten. Some candidates were confused and used $E=hc/\lambda$.
	с	Momentum / (kinetic) energy / speed (of electrons) increases / (de Broglie) wavelength decreases	B1	
		Radius / diameter of rings decreases / pattern becomes 'smaller' (AW) or the rings are now brighter	B1	Examiner's Comments This was another question where candidates were expected to explain their answers. In this case a step by step approach was helpful. Some candidates stated that the energy and the wavelength would increase. Others thought that the pattern would become larger because of the increase in energy. Candidates should be encouraged to write clear, logical explanations.
		Total	7	
3 6	а	electrons emitted / s = 1.0×10^{-9} / 1.6×10^{-19} = 6.25×10^{9}	C1	
		photons arriving = $6.25 \times 10^9 \times 20 = 1.25$ 10^{11}	C1	
		ϵ = 1.25 10 ¹¹ × 4.0 × 10 ⁻¹⁹ = 5.0 × 10 ⁻⁸ (J s ⁻¹)	A1	Allow ecf: 1 out of 3 for correct answer from any quoted number of electrons emitted / s
	b	$\epsilon = hc / \lambda$	C1	
		$3.5 \times 10^{-19} = 6.6 \times 10^{-34} \times 3.0 \times 10^8 / \lambda$	M1	
		λ= 5.66 × 10 ⁻⁷ (m)	A1	
		Total	6	

$\begin{bmatrix} U & Use of E = hf or E = hc/\lambda \\ EITHER \\ (\lambda) number = (500 \times 10^{-9})/(2.5 \times 10^{-11}) \\ number = 2.0 \times 10^4 \\ OR \\ (E) number = (7.96 \times 10^{-15})/(3.98 \times 10^{-19}) \\ (E) number = 2.0 \times 10^4 \\ OR \\ (f) number = 2.0 \times 10^4 \\ OR \\ (f) number = (1.2 \times 10^{19}) / (6 \times 10^{14}) \\ number = 2.0 \times 10^4 \\ OR \\ (f) number = 2.0 \times 10^4 \\ OR \\ (f) number = (1.2 \times 10^{19}) / (6 \times 10^{14}) \\ number = 2.0 \times 10^4 \\ OR \\ (f) number = 2.0 \times 10^4 \\ OR \\ (f) number = 2.0 \times 10^4 \\ C1 \\ C$
$\begin{vmatrix} \lambda \end{pmatrix} \text{ number } = (500 \times 10^{-9})/(2.5 \times 10^{-11}) \\ \text{ number } = 2.0 \times 10^{4} \\ \textbf{OR} \\ (E) \text{ number } = (7.96 \times 10^{-15})/(3.98 \times 10^{-19}) \\ \text{ number } = 2.0 \times 10^{4} \\ \textbf{OR} \\ (f) \text{ number } = (1.2 \times 10^{19}) / (6 \times 10^{14}) \\ \text{ number } = 2.0 \times 10^{4} \\ \textbf{OR} \\ (f) \text{ number } = (1.2 \times 10^{19}) / (6 \times 10^{14}) \\ \text{ number } = 2.0 \times 10^{4} \\ \textbf{S} \\ \frac{1}{8} \\ $
3 OR C1 Allow ECF from (b) (E) number = $(7.96 \times 10^{-15})/(3.98 \times 10^{-19})$ Allow ECF from (b) Allow ECF from (b) number = 2.0×10^4 Allow ECF from (b) Allow ECF from (b) OR (f) number = $(1.2 \times 10^{19})/(6 \times 10^{14})$ Allow ECF from (b) number = 2.0×10^4 3 Image: C1 from (b) Total 3 Image: C1 from from (b) $\lambda = \frac{h}{mc} = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3.0 \times 10^8}$ C1 from from (b) Wavelength = 2.4×10^{-12} (m) Allow ECF from (b) Image: C1 from from from from (b) C1 from from (b) $\frac{h}{2} = \frac{h}{9.11 \times 10^{-31} \times 3.0 \times 10^8}$ C1 from from from from from from from from
3 7 Image: Constant of the second seco
7 (E) number = $(7.96 \times 10^{-15})'$ (3.98×10^{-19}) C1 A1 A1 A1 Allow ECF from (b) 0R (f) number = $(1.2 \times 10^{19}) / (6 \times 10^{14})$ Allow ECF from (b) 1 0R (f) number = $(1.2 \times 10^{19}) / (6 \times 10^{14})$ Allow ECF from (b) 1 0R (f) number = $(1.2 \times 10^{19}) / (6 \times 10^{14})$ Allow ECF from (b) 1 0R (f) number = $(1.2 \times 10^{19}) / (6 \times 10^{14})$ C1 1 0R (f) number = $(1.2 \times 10^{19}) / (6 \times 10^{14})$ C1 1 0R (f) number = $(1.2 \times 10^{19}) / (6 \times 10^{14})$ C1 2 1 0 0 0 3 energy of two photons = $2 \times mc^2$ or $2 \times \frac{hc}{\lambda} = 2 \times 10^{-2}$ C1 $\lambda = \frac{h}{mc} = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3.0 \times 10^{8}}$ C1 Correct use of $\frac{hc}{\lambda} = mc^{2}$ wavelength = 2.4×10^{-12} (m) A1 C1 Correct use of $\frac{hc}{\lambda} = mc^{2}$ $\frac{3}{9}$ $\frac{hc}{\lambda} = \phi + KE_{max}$ and $\phi = 2.3 \times 1.6 \times 10^{-19}$ C1 C1 $\frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{5.1 \times 10^{-7}} = 2.3 \times 1.6 \times 10^{-19} + KE_{\pi}$ C1 Allow 3 maths for an answer of 2.0 \times 10^{-20} Lynglue of h to 2.5
number = 2.0×10^4 A1 OR (f) number = $(1.2 \times 10^{19}) / (6 \times 10^{14})$ A1 number = 2.0×10^4 3 Image: Second
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Inumber = 2.0×10^4 Total 3 and the second se
Image: Non-Section 1.1 Total 3 3 energy of two photons = $2 \times mc^2$ or $2 \times \frac{hc}{\lambda} = 2$, C1 $\lambda = \frac{h}{mc} = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 3.0 \times 10^8}$ C1 C1 C1 wavelength = 2.4×10^{-12} (m) A1 Total 3 3 $\frac{hc}{\lambda} = \phi + KE_{max}$ and $\phi = 2.3 \times 1.6 \times 10^{-19}$ C1 $\frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{5.1 \times 10^{-7}} = 2.3 \times 1.6 \times 10^{-19} + KE_n$ C1 Allow 3 marks for an answer of 2.0 \times 10^{-20} it value of h to 2.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
C1 C1 Correct use of $\frac{hc}{\lambda} = mc^2$ wavelength = 2.4 × 10 ⁻¹² (m) A1 Total 3 3 $\frac{hc}{\lambda} = \phi + KE_{max}$ and $\phi = 2.3 × 1.6 × 10^{-19}$ C1 $\frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{5.1 \times 10^{-7}} = 2.3 \times 1.6 \times 10^{-19} + KE_n$ C1 Allow 3 marks for an answer of 2.0 x 10^{-20} it value of h to 2 s
wavelength = 2.4×10^{-12} (m) A1 Total 3 $3 \\ 9$ $\frac{hc}{\lambda} = \phi + KE_{max}$ and $\phi = 2.3 \times 1.6 \times 10^{-19}$ C1 $\frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{5.1 \times 10^{-7}} = 2.3 \times 1.6 \times 10^{-19} + KE_n$ C1 Allow 3 marks for an answer of 2.0×10^{-20} it value of h to 2.5
$\begin{array}{c c} 3\\9\\\hline\\ 6.63 \times 10^{-34} \times 3.00 \times 10^8\\\hline\\ 5.1 \times 10^{-7} \end{array} = 2.3 \times 1.6 \times 10^{-19} \text{C1} \\\hline\\ \hline\\ \text{Allow 3 marks for an answer of 2.0 x 10^{-20} i: value of h to 2 states to the second secon$
9 $\frac{1}{\lambda} = \phi + KE_{\text{max}} $
Allow 3 marks for an answer of 2.0 x 10^{-20} l: value of <i>h</i> to 2 s
Allow 3 marks for an answer of 2.0×10^{-20} J; value of h to 2 s
AI used.
Total 3
Less energy used from power stations, which in turn produce less carbon dioxide emissions and hence less environmental
4 i damage 0 i or Infrequent need for disposal of LED lamps B1 has less impact on landfill sites or use of natural resources.
0 I or B1 Infrequent need for disposal of LED lamps has less impact on landfill sites or use of
0 1 or B1 1 or Infrequent need for disposal of LED lamps has less impact on landfill sites or use of natural resources. B1 ii The energy of a photon depends on the B1 B1

		Photon mentioned / one-to-one interaction (between electron and photon)		
		(Maximum KE of electrons decreases as wavelength increases because) $KE_{(max)} = \frac{hc}{\lambda} - \phi$ (Any subject) or threshold frequenc	B1	Not $KE_{(max)} = hf - \varphi$ by itself, but allow with $\underline{c} = f\lambda$ Allow $\frac{hc}{\lambda}$ or hf for 'energy of photon' and φ
4 1		(When $\lambda < \lambda_0$) energy (of photon) > work function / <i>f</i> > threshold frequency and electrons emitted / $KE_{(max)} \neq 0$ or	B1	for 'work function' for this B1 mark Not f_0 for threshold frequency
		(When $\lambda = \lambda_0$) energy (of photon) = work function / f = threshold frequency and electrons just emitted / not emitted / $KE_{(max)} = 0$ or (When $\lambda > \lambda_0$) energy (of photon) < work function / f < threshold frequency and electrons not emitted / $KE_{(max)} = 0$	B1	Allow λ_0 / threshold wavelength is the <u>maximum</u> wavelength for electrons to be emitted Allow threshold frequency is the <u>minimum</u> frequency for electron(s) to be emitted Allow work function is the <u>minimum</u> energy for electron(s) to be emitted
		Total	3	
4 2		$\frac{hc}{\lambda} = 2 \times 9.11 \times 10^{-31} \times (3.0 \times 10^8)^2$	C1	
		$\lambda = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{2 \times 9.11 \times 10^{-31} \times (3.0 \times 10^8)^2}$	C1	
		$\lambda = 1.2 \times 10^{-12} (m)$	A1	Allow 2 marks for 2.4×10^{-12} (m); factor of 2 omitted in the first line.
		Total	3	
4 3		3.2 × 1.6 × 10 ⁻¹⁹ or 6.63 × 10 ⁻³⁴ × 960 × 10 ¹²	C1	
		$E_{k max} = 6.63 \times 10^{-34} \times 960 \times 10^{12} - 5.12 \times 10^{-19}$	C1	
				Note answer to 3 SF is 1.24×10^{-19} (J)
		$E_{k max} = 1.2 \times 10^{-19} (J)$	A1	Examiner's Comments
				This part was generally well answered. Some weaker candidates were not able to rearrange Einstein's equation. Other candidates were unable to change electron volt to joule.
		Total	3	
		Photon(s) mentioned	B1	
4 4	а	One-to-one interaction between photons and electrons	B1	Allow 'photon absorbed by an electron' Allow: collide etc. for interaction
		Energy of photon is independent of intensity / intensity is to do with rate (of	B1	Allow $E = hf$ or $E = hc/\lambda$

	photons / photoelectric emission) / photon energy depends on frequency / energy of photon depends on wavelength / photon energy ∝ frequency / photon energy ∝ 1/λ energy of uv photon(s) > work function (of zinc) / frequency of uv > threshold frequency	B1	 Allow energy of light photon(s) < work function (of zinc) / frequency of light > threshold frequency Allow ≥ instead of > here Not f > f₀ Examiner's Comment Many candidates wrote enthusiastically about photoelectric effect and understood the significance of work function energy (or threshold frequency) and the one-to-one interaction between photon and an electron. Some candidates did not mention 'photons' and this limited the marks they could acquire. The role of intensity was less understood. Many candidates thought it was linked to 'the <i>number of photons'</i> or 'the amount of electrons emitted. The important term rate of the missing ingredient. Top-end candidates gave eloquent answers, typified by the response: 'intensity of visible light only affects the rate of photons incident on the plate but not the energy of each photon'. Two common misconceptions were: Photons were emitted from the negative plate. Confusing threshold frequency and work function energy.
b	$\phi = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{2.9 \times 10^{-7}} \text{ or } 6.86 \times 10^{-19} \text{ (J)}$ $E = 5.1 \times 1.60 \times 10^{-19} \text{ or } 8.16 \times 10^{-19} \text{ (J)}$ max kinetic energy = (8.16 - 6.86) × 10^{-19} max kinetic energy = 1.3 × 10^{-19} \text{ (J)}	C1 C1 A 1	Note: Using 5.1 and not 8.16 × 10^{-19} cannot score this mark or the next mark Allow 2 marks for 0.81 eV Examiner's Comment This was a notable success for most of the candidates. Examiners were pleased to see a range of techniques being used to get the correct answer of 1.3×10^{-19} J. Many answers showed excellent structure, effortless conversion of energy from electronvolt to joule and excellent use of the calculator when dealing with powers of ten. Most candidates scored three marks. A small number of candidates left the final answer as 0.81 eV; the only thing missing was the conversion to J.
c	Any <u>three</u> from: The electrons are repelled by C / electrons travel against the electric field (AW) The electrons are emitted with a 'range' of speed / velocity / kinetic energy (AW) As <i>V</i> increases the slow(er) electrons do not reach C and hence / decreases maximum KE in the range 2.1 <u>eV</u> to 2.2 <u>eV</u> or 3.36×10^{-19} J to 3.52×10^{-19} J	B1× 3	Note 'range' can be implied by 'highest' or 'lowest' Allow 'find p.d. when current is (just) zero, and then KE = $e \times V$ Examiner's Comment The electrons emitted from the metal plate have a range of kinetic energy. The emitted electrons are repelled by the negative electrode C. Fewer electrons reach C as the p.d. is increased.

				When the p.d. is about 2.2 V, and the current zero, the most energetic electron are stopped from reaching C . This makes the maximum kinetic energy of the electrons equal to 2.2 eV or 3.4×10^{-19} J. The question baffled most candidates. Some top-end candidates commented on <i>'the electrons repelled by</i> C' and the maximum kinetic energy of the emitted electrons being 2.2 eV. Such answers were rare. Too many candidates made guesses with answers such as <i>'the current drops because resistance increases'</i> and <i>'temperature increases and hence the current decreases'</i> .
		Total	10	
4		$E = (hc/\lambda =) 6.63 \times 10^{-34} \times 3.0 \times 10^{8}/450 \times 10^{-9}$	C1	
5		$E = 4.42 \times 10^{-19} (J)$	C1	
		energy = 2.76 (eV)	A1	N.B. the answer here must be 2 SF or more
		Total	3	
4		$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{480 \times 10^{-9}} \text{or} E = 4.1(4) \times 10^{-9}$	C1	
		$N = \frac{1.2 \times 10^{-3}}{4.1(4) \times 10^{-19}}$	C1	
		<i>N</i> = 2.9 × 10 ¹⁵ (s ⁻¹)	A1	Examiner's Comments The term 'photon' and the 480 nm wavelength should have prompted most candidates to calculate the energy of a single photon. The most common answer was to divide the 1.2 mW by 480 nm. Once again, it was the top-end candidates who correctly arrived at the answer of 2.9×10^{15} photons per second. About 1 in every five candidates omitted this question.
		Total	3	
4		(E =) $1.8 \times 1.6 \times$ 10^{-19} or 2.88×10^{-19} (J)	C1	
7		$1.8 \times 1.6 \times 10^{-19} = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{\lambda}$ $\lambda = 6.9 \times 10^{-7} \text{ (m)}$	C1 A1	
		Total	3	
4 8	а	The wave model cannot explain why there is a threshold frequency for metals.	B1	
		The new model / photon model proposed one-to-one interaction between photons and electrons and this successfully explained why threshold frequency exists.	B1	

	b	i	Any further one from: Energy of photon (hf) must be greater than or equal to work function of metal. The kinetic energy of emitted electrons was independent of the incident intensity. Correct reference to hf = Φ + KEmax $E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{380 \times 10^{-9}}$ or $\phi = 1.1 \times 1.6$ $\frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{380 \times 10^{-9}} = 1.1 \times 1.6 \times 10^{-19} + \frac{1}{2} \times 9.11 \times 10^{-31} v^2$		
			speed = 8.7 × 10 ⁵ (m s ^{−1})	A1	This is substituting values into $\frac{hc}{\lambda} = \phi + \frac{1}{2}mv^2$
		ï	The energy of a photon depends only on wavelength or frequency, so intensity does not change the maximum speed of the photoelectrons.	B1	
			Total	7	
4 9	а		$^{238}_{92}U \rightarrow {}^{234}_{90}Th +$ $^{4}_{2}He \text{ or } {}^{4}_{2}\alpha$	B1 B1	 allow proton and / or nucleon number to the right of symbol allow γ-photon; zero for any other extra particle Examiner's Comments Most candidates made a good start to the paper writing a correct equation for the nuclear decay.
	Ь		$mv = (4.00 - 0.0665) \times 10^{-25} \times 2.40 \times 10^{5}$ = 9.44 × 10 ⁻²⁰ v = 9.44 × 10 ⁻²⁰ / 6.65 × 10 ⁻²⁷ = 1.42 × 10 ⁷ k.e. = $\frac{1}{2} \times 6.65 \times 10^{-27} \times (1.42 \times 10^{7})^{2}$ = 6.70 × 10 ⁻¹³ (J) 6.70 × 10 ⁻¹³ / 1.60 × 10 ⁻¹³ = 4.19 (MeV)	C1 C1 A1 B1	allow 0.07×10^{-25} for α -particle mass max 3 if use 4.00 instead of 3.93 in momentum eq'n allow ratio of masses 234 and 4 or calculations using 234u and 4u allow p ² /2m calculation for k.e. accept 4.0 to 4.2; ecf (calculated value of k.e. in J)/e N.B. the correct answer automatically gains all 4 marks Examiner's Comments One mark in this question was reserved for converting units from joule into mega electronvolt. This was the only mark awarded to half of the candidates. Few recognised this to be an isolated system, applying the conservation of momentum to solve the problem. Few appeared to realise that the mass of an alpha particle is given in the Data, Formulae, and Relationships Booklet, calculating it instead by summing the masses of neutrons and protons. The most common incorrect approach was to use the formula $E = mc^2$ or to equate the kinetic energies of the thorium nucleus and alpha particle.
	с		$\Delta A = 32 = 4n_{\alpha} \text{ so } n_{\alpha} = 8$ $\Delta Z = 10 = 2n_{\alpha} - n_{\beta} \text{ so } n_{\beta} = 6$ argument / reasoning given for both n_{α} and n_{β}	B1 B1 B1	allow 8 (decays), i.e no mention of α particles allow 10 - 16 = -6; NOT 14 - 8 = 6; must state $\beta(-)$ particles e.g. change in mass number caused by α decay,change in proton number combination of α and β Examiner's Comments

					A significant number had no idea where to start and left the page blank. Of the rest most managed to decide on 8 alpha particles. A minority worked initially with the proton number rather than the nucleon number incorrectly choosing 5. The explanations about the choice of 6 beta particles were often just restricted to equating the numbers correctly rather than giving any description of the transformation of neutrons into protons.
			Total	9	
5 0	a		 Any four from: electrons may be diffracted by graphite/carbon/atoms/crystal lattice to produce rings / circular interference fringes diffraction of electrons occurs when the wavelength is comparable / similar to the gap size changes in the electron's speed/energy change the size of the ring / interference fringe spacing electrons have a (de Broglie) wavelength given by <i>λ=h/p</i> reason for the rings as opposed to linear pattern, e.g. graphite atoms are irregularly arranged. 	B1 x 4	Examiner's Comments The final question gave candidates the opportunity to describe the electron diffraction experiment. Answers were often vague, lacking necessary detail. Most candidates were able to describe electrons being diffracted by a graphite crystal lattice. Additional marks could have been gained by discussing the observations, the idea that electrons have a de Broglie wavelength and how the wavelength may be changed and the effect on the observations of a change in wavelength. Some candidates described why a circular pattern may be produced.
	b	i	Threshold frequency is the <u>minimum</u> frequency (of the incident EM waves/photon) to detach / emit / remove / release an electron (from the surface of the silver)	B1	Allow electrons Allow photoelectron / photoelectrons Examiner's Comments The majority of the candidates gained a mark for this question. When the mark was not scored, it was often due to candidates not realising it was the "minimum" frequency or answering the question in terms of energy.
		ï	1.1(0) x 10 ¹⁵ (Hz)	B1	Examiner's Comments Most candidates were able to read the threshold frequency from the graph. Where errors were made it was for either mis-reading the scale as 1.2 or omitting the 10 ¹⁵ Hz. AfL When reading data from a graph, read the scale and the units from each axis.

	ii	6.63 x 10 ⁻³⁴ x 1.1 x 10 ¹⁵ or 7.293 x 10 ⁻¹⁹ 4.6 (eV)	C1 A1	Allow substitution of point from graph into Einstein's equation Allow use of gradient as the Planck constant Note 4.558 eV Examiner's Comments The majority of the candidates scored two marks on this question. Again, clear working assists candidates with appropriate units being included in intermediate stages of the calculation. Most candidates calculated the work function from the threshold frequency, their answer to the previous part. Some candidates correctly took a data point from the graph and substituted it into Einstein's photoelectric equation which also gained credit. Exemplar 8 $ \begin{bmatrix} $
		Total	8	
5 1	i	$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{490 \times 10^{-9}}$ energy = 4.1 × 10 ⁻¹⁹ (J)	C1 A1	Note answer to 3 SF is 4.06×10^{-19}
	ii	(number of photons =) $\frac{0.230}{4.06 \times 10^{-19}}$	C1 A1	Possible ECF from (b)(i) Note answer is 5.6×10^{17} when 4.1×10^{-19} is used
		number of photons = 5.7×10^{17}		
		Total	4	Ignore references to frequencies and threshold frequency Allow photoelectron instead of electron throughout
5 2		One photon interacts with one electron energy of photon = (maximum) <i>KE</i> (of electron) + work function (of the metal)	B1	Note an equation is required Allow $hf = KE_{(max)} + \varphi$, with $*hf$ = energy of photon, $KE_{(max)}$ = (maximum) KE (of electron) and φ = work function *Not hf = Planck constant × frequency (since there is no reference to 'energy of photon') Allow energy of photon <u>s</u> =as BOD Allow φ instead of work function for this mark

		Work function is the <u>minimum energy</u> (required) to remove <u>electron</u> (from the surface of a metal) Electron removed / photoelectric effect when energy of photon is greater than / equal to work function (of the metal)	B1	Allow 'work done' instead of 'energy' Allow electronsas BOD Allow electron removed / photoelectric effect when $hf > \varphi$ or electron removed / no photoelectric effect when $hf < \varphi$ or electron not removed / no photoelectric effect when $hf < \varphi$ Allow electrons and photons as BOD Examiner's Comments This question on the photoelectric effect provided excellent discrimination with most candidates demonstrating good knowledge of the photoelectric effect. The work function was well defined and the key idea of the one-to-one interaction between a photon and an electron was communicated well. Some candidates took work function and threshold frequency to be synonymous, and the Einstein's photoelectric equation was quoted without much interpretation. Candidates are once again reminded that in descriptions it is important to define any terms used. Rather than just writing $hf = \varphi + KEmax$ (which appears on the Data, Formulae and Relationship booklet), it would have would have been better to write energy of photon = work function of the metal + maximum kinetic energy of the electron as an alternative to annotating the formula with "where h is , f is , φ is, $KEmax$ is " Overall, the terms highlighted in the question helped candidates to provide focused responses. Many candidates continue to show knowledge of the quantum physics.
		Total	4	
5				
3	i	2.76 – 2.3 = 0.46 eV (so only 0.5% of energy/AW)	B1	allow 2.8 – 2.3 = 0.5 eV and 3.0 – 2.3 = 0.7 eV possible ecf from (b)
3	i	energy/AW) $n = 2000 \times 4^9 (= 5.24 \times 10^8)$ $Q = ne = 8.4 \times 10^{-11} (C)$ $I = 8.4 \times 10^{-11} / 2.5 \times 10^{-9}$ average current = 0.034 (A)	C1 C1 A1	· · · · · ·
3	i	energy/AW) $n = 2000 \times 4^9 (= 5.24 \times 10^8)$ $Q = ne = 8.4 \times 10^{-11} (C)$ $I = 8.4 \times 10^{-11} / 2.5 \times 10^{-9}$	C1 C1	 (b) allow ecf for wrong n allow 34 m(A); answer is 1.7 × 10⁻⁵ A if 2000 omitted (2/3) Examiner's Comments Almost all of the candidates attempted this last section of the paper with some success. In part (i) most candidates showed that they understood the theory behind the question and subtracted the appropriate two numbers from part (b) to gain the mark. Part (ii) was done well with a significant number obtaining the correct answer. Another large group forgot that 2000 electrons were released and performed the calculation for only a single electron

		interference) At point Q: path difference between slits and screen is an <u>odd number of half</u> <u>wavelengths</u> (for destructive interference)	B1	Allow $(n + \frac{1}{2})\lambda$ Not $\lambda/2$ Examiner's Comments It was expected that candidates would describe the path difference in terms of the wavelength. Candidates often realised that the bright line would have a path difference of an integer number of wavelengths, this was often written as $n\lambda$. To explain the dark line many candidates struggled with the appropriate relationship in terms of λ or did not state an odd number of half wavelengths.
		$x = 4.22 \text{ mm}$ $\lambda = \frac{4.22 \times 10^{-3} \times 0.56 \times 10^{-3}}{4.50}$ 5.25 × 10 ⁻⁷ m $\frac{0.02}{4.5} \text{ or } \frac{0.02}{0.56} \text{ or } \frac{0.2}{42.2}$	C1 C1 A1 C1	Note x = 42.2 mm or 4.2×10^{-2} m scores zero Note x = 3.84, 4.77 × 10^{-7} m may score max 2 Allow 4% or 5% with evidence of working Ignore significant figures
	H	$\frac{3.32}{4.5} \text{ or } \frac{3.32}{0.56} \text{ or } \frac{4.2}{42.2}$ $\left(\frac{0.02}{4.5} + \frac{0.02}{0.56} + \frac{0.2}{42.2}\right) \times 100 = 4.48\%$ Alternative max / min method: $2\lambda_{max} = \frac{4.24 \times 10^{-3} \times 0.58 \times 10^{-3}}{4.48} = 5.49 \times \frac{10^{-3}}{4.48}$ and/or $\lambda_{min} = \frac{4.20 \times 10^{-3} \times 0.54 \times 10^{-3}}{4.52} = 5.02 \times 1$ $\frac{\Delta\lambda}{\lambda} \times 100 = 4.4\% \text{ or } 4.6\%$	A1 B1 B1	Examiner's Comments Although candidates correctly identified the correct equation, a large number of candidates did not determine the fringe spacing correctly. Some candidates used 42.2 cm, others divided 42.2 cm by 11, 15 or 20. Furthermore, some candidates did not convert the slit separation from millimetres to metres. Candidates were able to identify the equation from the Data, Formulae and Relationships Booklet. Most candidates were able to determine at least one percentage uncertainty for the individual quantities correctly. Mistakes were made either on determining the other quantities or adding the percentage uncertainties. Some candidates attempted a maximum / minimum method – the common error with this method was not dividing maximum by minimum or minimum by maximum.
b	i	$\frac{6.63 \times 10^{-34} \times 3 \times 10^8}{5.25 \times 10^{-7}} = \frac{1.989 \times 10^{-25}}{5 \text{ b ii 1}} = 3.79$ $n = \frac{50 \times 10^{-3}}{3.79 \times 10^{-19}} = 2.5 \times 10^{23} \times 5 \text{ b ii 1} = 1.3 \times 10^{23} \times 5 \text{ b ii 1} = 1.3 \times 10^{23} \times 10^{-19}$		Allow ecf from bii Examiner's Comments Candidates found this question difficult. Many could not determine the energy of a photon correctly – an error carried forward was allowed from 5(b)(ii)1. The question also required candidates to realise that 50.0 mW is equivalent to 50.0 mJ s ⁻¹ . A common error was to divide the power by the charge on an electron.
	ii	2.6 eV = 2.6 × 1.6 × 10 ⁻¹⁹ = 4.16 × 10 ⁻¹⁹ J ORA	M1	Allow photon has 2.37 eV of energy

		Energy of photon is less than work function so photoelectrons will not be emitted	A1	Allow conclusion based 5 c i Examiner's Comments To explain whether photoelectrons will be emitted, candidates needed to convert the work function measured in electron volt to joule. A clear conclusion was needed.
		Total	11	
5 5	i	Kinetic energy (of proton) changes to potential (energy) or Potential energy increases as the kinetic energy (of the proton) decreases or Potential energy increases as work is done against the field / against repulsion / positive charge	B1	Allow 'it' / PE for (electric) potential energy Allow KE / <i>E</i> k
	ii	energy = $0.52 \times 10^{6} \times 1.60 \times 10^{-19}$ or $8.3(2) \times 10^{-14}$ (J) $\frac{1.60 \times 10^{-19} \times 27 \times 1.60 \times 10^{-19}}{4\pi\epsilon_0 R} = 8.32 \times 10^{-14}$ $R = 7.5 \times 10^{-14}$ (m)	C1 C1 A1	Allow 2 mark for 1.6×10^{-13} (m); $Z = 59$ used Allow 2 mark for 8.9×10^{-14} (m); $Z = 32$ used Allow 1 mark for 2.8×10^{-15} (m); $Z = 1$ used Allow 1 mark for 1.2×10^{-32} (m); energy = 5.2×10^5 used Examiner's Comments The above question on electric potential energy provided excellent discrimination with middle and upper quartile candidates showing how to produce immaculate answers – identify the physics, write down the correct physical equation, do any necessary conversions (e.g. MeV to J), rearrange the equation, substitute correctly and then write the final answer in standard form to the correct number of significant figures. About a third of the candidates scored full marks. Some of the missed opportunities or errors were: Using an incorrect equation with the distance squared Not correctly converting the kinetic energy 0.52 MeV into joule (J) Using the equation $r = roA^{1/3}$ for the mean radius of a nucleus to determine the minimum distance

	Total	4	
56	Any one from: Energy of visible light photon < work function (of zinc) (frequency of) visible (light/photon) < threshold frequency Any one from: Energy of UV photon > work function (of zinc) (frequency of) UV (radiation/photon) > threshold frequency Any two from: Collapse of leaf linked to removal of electrons One-to-one interaction of photon and (surface) electron Photon energy is independent of intensity / Intensity linked to rate of photons (incident on the zinc plate)	4 B1 B1 × 2	Allow / for frequency, λ for wavelength and ø for work function throughout Allow 'overcome' / 'met' / 'reached' when describing > or <
	Total	4	

PhysicsAndMathsTutor.com

5 7		5.0 eV = 8.0 × 10 ⁻¹⁹ (J) and 2.0 eV = 3.2 × 10 ⁻¹⁹ (J)	B1	Allow correct answers in terms of threshold frequency / wavelength for the metals and the frequency / wavelength of the photon
		$\frac{\text{photon energy} =}{\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{300 \times 10^{-9}}} = 6.6(3) \times 10^{-19} \text{ (J)}$	B1	Allow first two B1 marks for photon energy quoted as 6.6 \times 10 ⁻¹⁹ J and 4.1 eV
		energy of photon > work function of X Or energy of photon < work function of Y	B1	
		Hence electrons emitted from X with speed / KE from zero to a maximum value and no electrons are emitted from Y	B1	
		Total	4	
5 8	i	total nucleon number after fusion = 3 + 3 - 4 = 2	M1	Allow other correct methods
	i	total proton number after fusion = 1 +1 - 2 = 0	M1	
	i	(Hence it must be 2 neutrons ¹ ¹ ¶after the fusion reaction)	A0	
	ij	(BE of neutron(s) = 0 and BE of ${}_{2}^{4}$ He= 28.4 MeV) BE of ${}_{1}^{3}$ Hnucleus = ${}_{2}^{1} \times (28.4 - 11) = 8.7$ (MeV)	C1	
	ii	BE per nucleon = 8.7/3 = 2.9 (MeV) BE per nucleon = 2.9 × 10 ⁶ × 1.60 × 10 ⁻¹⁹	C1	
	ii	BE per nucleon = 4.6 × 10 ⁻¹³ (J)	A1	
		Total	5	
59	i	<u>electron</u> bound to nucleus / represents energy <u>electron</u> must gain to leave the atom / total energy of <u>electron</u> in atom is less than that of a free electron	B1	 Allow ionisation level defined as zero as AW for 'represents electron must gain energy to leave atom / move up energy level' Allow potentials for attractive forces are negative. Examiner's Comments This item provided good discrimination between the candidates. Many responses referred incompletely to the negative charge of the electron being the only factor, whereas the correct explanation is much more to do with the electron requiring energy to leave the atom and the ionization level being defined as the zero point. Some candidates were on the right path when they referred to the equivalent statement for gravitational potential energies.
	ii	1 energy = 2.55 (eV) 2 energy = 2.55 × 1.60 × 10 ⁻¹⁹ (J) $\lambda = \frac{6.63 \times 10^{-84} \times 3.0 \times 10^{6}}{2.55 \times 1.60 \times 10^{-19}}$ (Allow any subject) wavelength = 4.9 × 10 ⁻⁷ (m)	B1 C1 C1	Ignore sign Possible ECF from (ii)1
		wavelength = 490 (nm)		

			A1	Note: wavelength = 488 (nm) to 3 sf
				Examiner's Comments Virtually all candidates correctly evaluated the energy difference to be 2.55 eV. Negative values were condoned but are unlikely to be accepted in future series.
				Many candidates correctly calculated the wavelength of emitted light, although a minority did not convert the energy into joules or performed the required conversion to nanometres incorrectly.
		Total	5	
6 0	i	Fission reactors produce radioactive by- products which affect future generations and the environment in terms of possible contamination / exposure to humans and animals.	B1	
	ii	No of particles in 1000 g U = $1000/235 \times 6.02 \times 10^{23} = 2.56 \times 10^{24}$ No of reactions for U = 2.56×10^{24}	B1	Appreciate that the key to the answer is the difference in numbers of atoms / nuclei or equal number of nucleons involved scores one mark if nothing else achieved.
	ii	Energy from U = 2.56 × 10 ²⁴ × 200 = 5.12 × 10 ²⁶ MeV	B1	
	ii	No of particles in 1000g H = 6.02×10^{26} No of reactions = $6.02 \times 10^{26}/4$ Energy from H = $6.02 \times 10^{26}/4 \times 28 =$ 42.14×10^{26} MeV	B1	
	ii	Hence energy 42/5 = 8.2 times higher	B1	
	ii	<i>second method</i> 235 g of U and 4 g of H / He contain 1 mole of atoms	or B1	
	ii	there are 4.26 moles of U and 250 moles of He	B1	
	ii	so at least 58 times as many energy releases in fusion ratio of energies is only 7 fold in favour of U	B1	
	ii	therefore 58/7 times as much energy released by 1 kg of H	B1	
	ii	similar alternative argument, e.g. For U each nucleon 'provides' 0.85 MeV	B1	
	ii	For H each nucleon 'provides' 7 MeV	B1	
	ii	(Approx) same number of nucleons per kg of U or H	B1	
	ii	so 8.2 times as much energy from H	B1	
		Total	5	
6 1	i	(<i>KE</i> =) 210 × 1.60 × 10 ⁻¹⁹ (J) or 3.36 × 10 ⁻¹⁷ (J)	C1	Note using <i>KE</i> = 210 (J) is wrong physics XP

$1/2 \times 9.11 \times 10^{-31} \times v^2 = 3.36 \times 10^{-17}$ $v = 8.6 \times 10^6 \text{ (ms}^{-1}\text{)}$	C1 A1	Note the answer must be to more than 1 SF <u>Examiner's Comments</u> This was not a straight forward question but most candidates demonstrated excellent knowledge and application of physics here. The conversion of 210 eV was often done correctly. The K.E. equation was used successfully to show the final speed of the electrons to be about 8.6 × 10 ⁶ m s ⁻¹ . The exemplar 11 below shows a model response from a top-end candidate.
		Exemplar 11 In an electron-gun, each electron is accelerated to a maximum kinetic energy of 210 eV. (i) Show that the final speed of each electron is about $9 \times 10^{5} \text{ ms}^{-1}$. Maximum Kinetic every $\frac{1}{2} \cdot 210 \times \frac{10}{8} \times \frac{10}{2} \times 10^{-19}$ $\frac{1}{2} \cdot 10^{2} \times \frac{10}{2} \times \frac{10}{2}$
$\lambda = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 8.6 \times 10^6}$ $\lambda = 8.5 \times 10^{-11} \text{ (m)}$	C1 A1	to get the impossible response of 2.1×10^{16} ms ⁻¹ . Possible ECF from (i) Allow 2 marks for 8.1×10^{-11} (m); $v = 9 \times 10^{6}$ ms ⁻¹ used Examiner's Comments The majority of the candidates effortlessly used the de Broglie equation and their answer from (b)(i), or 9×10^{6} m s ⁻¹ , to calculate the wavelength λ of the electron. Misconception The two common mistakes being made here were: Using 3.0×10^{8} m s ⁻¹ for the speed instead of 8.6×10^{6} m s ⁻¹ . Using the energy of the photon equation $E = \frac{hc}{\lambda}$ instead of $\lambda = \frac{h}{mv}$.

		Total	5	
6 2	i	(surface area =) $4\pi \times (1.4 \times 10^9)^2$ or $2.46 \times 10^{19} (m^2)$ (intensity = $\frac{P}{4\pi r^2}$) intensity = $\frac{2.7 \times 10^{27}}{4\pi \times (1.4 \times 10^9)^2}$ intensity = $1.1 \times 10^8 (W m^{-2})$	C1 C1 A0	Allow 2.5 × 10 ¹⁹ (m ²) Note: Using π × (1.4 × 10 ⁹) ² is wrong physics; hence no marks in this show question Examiner's Comments This was a demanding question designed for middle and top-end candidates. The radiant intensity is equal to the power transmitted per unit cross–sectional area. The area being that of a sphere of radius 1.4 × 10 ⁹ m. The equation $4\pi R^2$ was appropriate here. The common errors, mainly from the low–scoring candidates, were using πR^2 and $\frac{4}{3}\pi R^3$. All the key steps in the calculations had to be structured well for
	ii	$E = \frac{3.00 \times 10^8 \times 6.63 \times 10^{-34}}{5.0 \times 10^{-7}}$ E = 4.0 × 10 ⁻¹⁹ (J)	C1 A1	Note: Answer to 3 SF is 3.98×10^{-19} (J) Allow 4×10^{-19} (J) without any SF penalty Examiner's Comments Most candidates were familiar with the equation for the energy of the photon. Answers were generally well–structured and calculations were undertaken without much error in either rearranging the equation or powers of ten. The answer to two significant figures was 4.0×10^{-19} J, as in the general rule with such answers, 4×10^{-19} J was acceptable without any significant figure penalty.
	ii i	(number per second = $\frac{2.7 \times 10^{27}}{4.0 \times 10^{-19}}$) number per second = 6.8×10^{45} (s ⁻¹)	B1	Possible ECF from (b)(ii) Examiner's Comments This was a successful end for the top–end candidates, who correctly divided the total output power of Procyon of 2.7 × 10 ²⁷ W by the energy of each photon from (b)(ii). The two common errors were dividing the intensity by the photon energy and changing the photon energy from joule (J) to electron–volt (eV).
		Total	5	
6 3	i	$(P =) 0.01 \times 2.5 \text{ or } 0.01^2 \times 250 \text{ or}$ 2.5 ² /250 or 0.025 (W) $(E_{\text{photon}} =) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{4.7 \times 10^{-7}} \text{ or } 4.23 \times 10^{-19} \text{ or } 4.23$	C1 C1	Allow 4.0 × 10 ⁻¹⁹ (J); which is 2.5 eV

	number per second = $5.9 \times 10^{16} (s^{-1})$		
		A1	Note using 4.0 × 10 ⁻¹⁹ (J) gives 6.25 × 10 ¹⁶ (s ⁻¹)
			Examiner's Comments
			This question required knowledge of both power and energy of photons. It discriminated well with many of the top end candidates getting the correct of $5.9 \times 10^{16} \text{ s}^{-1}$. A significant number of candidates scored 1 mark for the energy of the photons. Using the power of 0.025 W in the final step of the calculation proved to be the main obstacle in this calculation. Alternative answers using the energy of a photon as 2.5 eV were allowed. This gave the rate of photons emission to be $4.0 \times 10^{16} \text{ s}^{-1}$.
			? Misconception
			The most common mistake was to calculate the energy of the photon in joule, but to write the frequency 6.4×10^{14} on the answer line. This wayward answer can perhaps be explained by frequency and the rate of photon emissions having the same units – s ⁻¹ .
			Possible ECF from (i) Allow 2.6 (eV) or 3.7×10^{-19} (J) Allow 2.5 (eV) as the energy of the photon
			Note the conclusion must be consistent with (i) Allow $hf > \varphi$ Note this can be implied by calculating the KE of the emitted electron
			Examiner's Comments
ii	$(E_{photon} =) 2.64 \text{ (eV) or } (\varphi =) 3.68 \times 10^{-19}$ (J) or $(f_0 =) 5.55 \times 10^{14} \text{ (Hz) or } (\lambda 0 =) 5.40 \times 10^{-7} \text{ (m)}$ Photoelectrons are emitted and $2.6(4) > 2.3$ or $4.23 \times 10^{-19} > 3.68 \times 10^{-19}$ or $6.38 \times 10^{14} \text{ (Hz)} > 5.55 \times 10^{14} \text{ (Hz)}$ or $4.7 \times 10^{-7} \text{ (m)} < 5.40 \times 10^{-7} \text{ (m)}$	M1 A1	Most candidates showed excellent knowledge and understanding of electronvolts and the photoelectric equation. A variety of answers were accepted. The most common approach was to calculate the energy of the photon in eV, and then either show that this was greater than the work function of the metal or to calculate the kinetic energy of the emitted photoelectron. A lot of confidence in the topic of quantum physics was evident in the answers from the candidates. This is illustrated by exemplar 8 below from a middle-grade candidate.
			Exemplar 8
			(ii) The light from the LED is incident on a metal of work function 2.3 eV. Explain, with the help of a calculation, whether or not photoelectrons will be emitted from the surface of the metal.
			This exemplar shows the right blend of calculations and scientific

				text to support the response. Good command of quantum physics earned this candidate full marks.
				OCR support
				Being aware of the contents of the data, formulae and relationship booklet and its layout will support candidates, alleviating the need to recall numerical values of constants and allowing retrieval of correct formulae, or giving assurance that the student has recalled correctly.
		Total	5	
6 4	i	The direction of the electric field due to the negative charge is to the left and right for the positive charge.	B1	
	i	The magnitude of the electric field strength due to the positive charge is smaller than that for the negative charge (because of greater distance).	B1	
		(Hence the resultant electric field strength is to the left.)		
	ii	energy = $\frac{Qq}{4\pi\epsilon_0 r} = \frac{(1.60 \times 10^{-19})^2}{4\pi\epsilon_0 \times 3.0 \times 10^{-10}}$	C1	
	ii	energy = $7.67(2) \times 10^{-19} (J)$	C1	
	ii	energy = 4.8 (eV)	A1	
		Total	5	
		4.1 eV = 6.56 × 10 ⁻¹⁹ (J)	C1	
6 5	i	$\frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{98 \times 10^{-9}} \text{ or } 2.03 \times 10^{-18}$	C1	Allow 1.96 × 10 ⁻¹⁸ for use of 6.4 × 10 ⁻³⁴ (J s)
		1.4 × 10 ⁻¹⁸ (J)	A1	Allow 1.3 × 10 ⁻¹⁸ (J) for use of 6.4 × 10 ⁻³⁴ (J s)
	ii	KE is independent of intensity (for constant wavelength) / intensity only affects the number of photons	M1	Allow decreasing intensity, decreases the number of photons / energy of a photon only depends on frequency or wavelength
		No change in <i>KE</i> _{max}	A1	
		Total	5	
6 6	i	$\varepsilon = eV = 12 \times 1.6 \times 10^{-19} = 1.92 \times 10^{-18} (J)$	B1	
	i	¹ / ₂ mv ² = 1.92 × 10 ⁻¹⁸	C1	Allow ecf for energy value
	i	$v^2 = 2 \times 1.92 \times 10^{-18} / 9.1 \times 10^{-31} = 4.22 \times 10^{12}$	C1	

	i	v = 2.05 × 10 ⁶ (m s ⁻¹)	A1	
	ii	accelerates from 0 to v so use v / 2	C1	ecf (i)
	ii	$t = 5 \times 10^{-3}/1 \times 10^{6} = 5 \times 10^{-9} (s)$	A1	Allow 1 mark for 2.5 × 10 ⁻⁹ s
		Total	6	
6 7	i	$hf = \phi + KE_{(max)}$ and kinetic energy = 0 (at f ₀) (therefore $\phi = hf_0$)	B1	Examiner's Comments About a third of the candidates showed how Einstein's photoelectric equation led to the expression $\phi = hf_0$. The key in securing a mark was stating that the kinetic energy of the electrons is zero at the threshold frequency. Some candidates lost the mark for careless work such as writing $hf_0 = \phi + KE_{max}$.
	ii	Data point (to with ½ small square) and a reasonable straight (best-fit) line drawn with a straight edge / ruler	B1	Not freehand / wobbly line Examiner's Comments Most candidates picked up the mark for plotting the data point and drawing a best fit line. Examiners were a lenient with the marking of the line of best fit. Candidates must use rulers and ensure an equal spread of data plots about their best fit lines.
	ii i	Correct conversion from eV to J using 1.6×10^{-19} (gradient = <i>h</i>) gradient determined and <i>h</i> = (6.4 to 7.4) × 10 ⁻³⁴ (J s)	B1 B1	 Note this can be a single value of φ or Δφ Allow value of h must be given to 2 or 3 SF Examiner's Comments The determination of Planck constant h from the gradient of the best fit line was impeccably undertaken by the top-end candidates. A large triangle was used to determine the gradient of the best fit line. More than half of the candidates correctly converted the eV to J. The most common errors here were: Using 1.0 × 10⁻¹⁹, rather than 1.6 × 10⁻¹⁹ to convert eV to J. Calculating the gradient using eV values. Omitting the 10¹⁴ factor for the frequency.
	i v	Draw a worst-fit line (and determine gradient / h) (AW) % uncertainty = (h from biii - h from worst line) × 100 ÷ h from biii or Calculate the average h using f ₀ and ϕ (values)	B1 B1 B1	Allow (line of) maximum / minimum gradient Ignore sign Allow gradient instead of <i>h</i>

		% uncertainty = (½ range ÷ average <i>h</i>) × 100	B1	Examiner's Comments About one in ten candidates omitted this question. Many candidates realised that a worst-fit line had to be draw, with or without error bars, and then its gradient used to determine the percentage uncertainty in the experimental value for <i>h</i> . A significant number of candidates gave answers in terms of percentage difference between their experimental value and the accepted value for Planck constant.
		Total	6	
6 8	i	E = hc/λ; Δε = E1 – E ₂ = hcΔλ/λ ²	C1	allow calculation of E = hc/λ twice and difference taken
	i	$\Delta \varepsilon = 6.63 \times 10^{-34} \times 3 \times 10^8 \times 0.6 \times 10^{-9} / 5.9^2 \times 10^{-14}$	C1	
	i	$\Delta \varepsilon = 3.4 \times 10^{-22} (J)$	A1	
	ii	sin θ = nλ/d; 1/d = 3 × 10 ⁵ (m ⁻¹)	C1	
	ii	$\theta_1 - \theta_2 = \sin^{-1} (2 \times 589.6 \times 3 \times 10^{-4}) - \sin^{-1} (2 \times 589 \times 3 \times 10^{-4})$	M1	or similar
	ii	$\theta_1 - \theta_2 = 20.717 - 20.695 = 0.022^0$	A1	allow 20.72 – 20.70
		Total	6	
69	i	4.1 eV = = 4.1 × 1.6 × 10 ⁻¹⁹ or 6.56 × 10 ⁻¹⁹ J OR $E_k = 6.63 \times 10^{-34} \times 1.2 \times 10^{15} - \phi$ $E_k = 6.63 \times 10^{-34} \times 1.2 \times 1075 - 6.56 \times 10^{-19}$ $E_k = 1.39 \times 10^{-19}$ J $v = \sqrt{\frac{2 \times 1.39 \times 10^{-19}}{9.11 \times 10^{-31}}} = \sqrt{3.06 \times 10^{11}}$ 5.536 × 10 ⁵ m s ⁻¹	C1 C1 C1 A0	Allow $f_0 = 9.9 \times 10^{14}$ Hz Allow $E_k = 6.63 \times 10^{-34} \times (1.2 \times 10^{15} - 9.9 \times 10^{14})$ Allow 1.4×10^{-19} J 3.06×10^{11} scores three marks Examiner's Comments Good candidates clearly showed the individual steps in this calculation, e.g. the conversion of electron-volt to joule for the work function, the energy of the photon calculated. It was important that candidates demonstrated that they had substituted the mass of the electron from the data booklet and correctly evaluated the square root term. Examiners expected to see 5.536×10^5 (m s ⁻¹) for full credit so that it was clear that candidates had correctly calculated the powers of ten.

		Maximum energy is independent of intensity/(number of photons has increased but) energy of photon is the	M1	$hf - \theta = kE_{wax} = 7.95 \times 10^{+14} - 6.55 \times 10^{-14} = 1.39 \times 10^{-14} = 5.524 \dots \times 10^{5}$ $h_{L} m v^{-} = 1.39 \times 10^{-14} = 5.524 \dots \times 10^{5}$ $\int \frac{2kE}{m} = \sqrt{-9} \int \frac{2 \times 1.39 \times 10^{-14}}{9.1 \times 10^{-11}} = 5.524 \dots \times 10^{5}$ $\approx 5.5 \times 10^{-5} (13)^{5}$ In line 3 of the candidate's working, there is a rearrangement of the equation given at the beginning of the question. There is then clear substitution of the energy of a photon which was calculated in line 1 and the work function which had been converted from electron volt to joule in line 2 to give a value for the maximum kinetic energy of the electrons. This scores three marks. In the final part the candidate correctly shows the rearrangement of the kinetic energy equation to give v as the subject and then correctly substitutes in the values including the mass of the electron from the data and formulae sheet. The final answer is given as 5.527×105 which is then shown to be approximately equal to 5.5×105 (ms ⁻¹). This last part is essential in these show type questions.
	ii	same/energy of a photon is <u>only</u> dependent on frequency/intensity affects the number of photons/electrons released <u>only</u> /frequency of photon has not changed No change in maximum speed	A1	Not "Does not increase" <u>Examiner's Comments</u> For this type of question, a clear explanation is needed before the mark for stating the change, if any. Candidates' descriptions were often vague, and few stated that the maximum energy was independent of intensity.
		Total	6	
7 0	i	Electrons behave or travel as waves.	B1	

	i i	The rings demonstrate that the electrons are diffracted by individual carbon atoms / spacing between carbon atoms. The (de Broglie) wavelength of the electrons is comparable to the 'size' of the carbon atoms or the spacing between carbon atoms. $v^{2} = \frac{1.6 \times 10^{-19} \times 1200}{0.5 \times 9.11 \times 10^{-31}} \text{ or } v = 2.053 \times 10^{7} \text{ (n}$ $\lambda = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 2.053 \times 10^{7}}$	B1 B1 C1	Correct use of $\frac{1}{2} mv^2 = eV$
	11 .:	······	C1	
	ii ii i	wavelength = 3.5 × 10 ⁻¹¹ (m) Results published to allow peer review Procedure shared with other scientists to allow replication	B1	
		Total	6	
7 1		 *Level 3 (5–6 marks) at least E3,4 and 2 or 5 at least P1,2 and 5 There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) expect 3 points from E and 2 points from P or 2 points from E and 3 points from P There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) at least 2 points from E and 1 point from P or vice versa. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks No response or no response worthy of credit. 	B1	 Experiment (E) Adjust the potential divider to low or zero voltage connect flying lead to one LED increase voltage until LED just lights or strikes repeat several times and average to find V_{min} repeat for each LED shield LED inside opaque tube to judge strike more accurately. Processing (P) a graph of V_{min} against 1/λ will be a straight line through the origin so need to calculate values of 1/λ then draw line of best fit through origin gradient G = V_{min} λ = hc/e hence h = eG/c
		Total	6	

Indicative scientific points may include: Description of pattern changes • Rings become closer (not just smaller) Level 3 (5-6 marks) • Rings become brighter Description and explanation of pattern changes **and** quantitatively explains link between de Broglie wavelength and Qualititative explanation of pattern changes in terms of de potential difference. Broglie wavelength and potential difference There is a well-developed line of reasoning which is clear and logically structured. The Electrons gain greater energy information presented is relevant and Electrons have a greater speed substantiated. • Electrons have a greater momentum Implies smaller wavelength ٠ Level 2 (3-4 marks) • Smaller wavelength means less diffraction Clear description of how pattern changes Shorter wavelength gives shorter path differences between • and explanation of pattern changes and areas of constructive and destructive interference qualitatively explains link between de Broglie wavelength and potential difference or Quantitative explanation of pattern changes in terms of de Broglie wavelength and potential difference limited description of how pattern changes $eV = \frac{1}{2}mv^2$ and p = mVquantitatively explains link between de $v^2 \alpha V$ or $p^2 \alpha V$ Broglie wavelength and potential difference. $\lambda = \frac{h}{p} \qquad \text{or} \qquad \lambda \propto \frac{1}{v}$ $\lambda = \frac{h}{\sqrt{2meV}} \qquad \text{or} \qquad \lambda \propto \frac{1}{\sqrt{v}}$ B1 ×6 There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. **Examiner's Comments** Level 1 (1-2 marks) This question tested an understanding of electron diffraction. Many Limited description of how pattern candidates gave a good qualitative explanation of how the pattern changes and limited attempts to explain would change. High achieving candidates clearly demonstrated qualitatively the link between de Broglie how the de Broglie wavelength λ was related to the potential wavelength and potential difference or difference V by equating the energy eV to kinetic energy, then using the definition of momentum and the de Broglie wavelength. qualitatively explains link between de Some candidates confused speed v with potential difference V. Broglie wavelength and potential Many candidates gave a good qualitative explanation. Many difference. candidates did not state that the rings would become brighter. The information is basic and communicated in an unstructured way. The information is AfL supported by limited evidence and the relationship to the evidence may not be clear. Candidates should be able to describe how to use light gates. In particular, candidates should be able to indicate the 0 marks measurements that are needed to determine speed and No response or no response worthy of acceleration. Candidates should state that the light gates should credit. be connected to a timer or data-logger.

AfL

7 2

		When analysing experimental data, candidates should be able to determine appropriate graphs to plot which will give a straight line (if the given relationship is true). Candidates should also be able to describe how unknown quantities may be determined using the gradient and / or <i>y</i> -intercept.
		? Misconception
		There is some confusion between the equations to use for photoelectric effect and the equations to use when considering the de Broglie wavelength. For the de Broglie wavelength, a common misconception is to relate the energy to wavelength by the equation for the energy of a photon, $E = \frac{hc}{\lambda}$
	Total	6
	Level 3 (5–6 marks)	Indicative scientific points may include:
	Clear explanation of observations and clear evidence of particulate nature of electromagnetic waves	 Explanation of Observations Discharge due to the emission of electrons / negative
	There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	 charge Intensity depends on distance <u>Rate</u> of incident photons is more at smaller distances Greater intensity / rate of uv photons linked to quicker fall uv causes instantaneous discharge No effect with light
	Level 2 (3–4 marks) Clear explanation of observations or clear evidence of particulate nature of electromagnetic waves or has limited explanation of observations and limited evidence of particulate nature of EM	 Intensity of light has no effect on the discharge Natural discharge over a long period of time Evidence of particulate nature of em
7	radiation	Wave theory suggests leaf would fall with light
3	There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.	 Photon as packet of energy One to one interaction uv <u>photon</u> greater energy than work function / greater frequency than threshold frequency Light photons have less energy than the work function
	Level 1 (1–2 marks) Has limited explanation of observations or limited evidence of particulate nature of EM radiation	 Eight <u>photons</u> have less chergy than the work function E = hf / photon energy depends on frequency Energy of photon independent of intensity Energy conserved in interaction Einstein's equation (words or symbol)
	The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.	Examiner's Comments
	0 marks No response or no response worthy of credit.	This was the second LoR question. It gave candidates the opportunity to discuss the photoelectric effect. Good answers were structured well and explained the observations with relevant theory. A surprising number of candidates did not appreciate that the white light did not release photoelectrons. Good answers

			clearly explained the differences between the white light and the ultra violet light, the effect of increasing the intensity was related to the rate at which photons were absorbed by the plate and gave appropriate equations.
	Total	6	
7 4	 *Level 3 (5–6 marks) Clear explanation and discussion There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Some explanation and some discussion There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Limited explanation or limited discussion The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks No response or no response worthy of credit. 	B1 × 6	 Indicative scientific points may include: Explanation hf = Φ + KE_{max} (any subject) A graph of KE_{max} against <i>f</i> is a straight line graph with gradient = <i>h</i> (and intercept = -Φ) Draw a straight best-fit line through points and determine the gradient using a 'large triangle' Discussion of accuracy and precision % uncertainties are 4.8% for A and 9.1% for B Data points widely spread out for B. (ORA) For B the value of <i>h</i> is accurate because its closer to the real / actual value (but the results are not precise) For A the value of <i>h</i> is precise because of the smaller % uncertainty (but the result is not accurate)
	Total	6	
7 5	Level 3 (5–6 marks) Clear description and clear calculations of energy per kg There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Clear description OR Clear calculations of energy per kg OR Some description and some calculations There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by	B1× 6	Indicative scientific points may include: Description Energy is produced in both reactions More energy produced (per reaction) in fission The (total) binding energy of 'products' is greater In fusion, nuclei repel (each other) Fusion requires high temperatures / high KE Fission reactions are triggered by (slow-)neutrons Chain reaction possible in fission Calculations 1 kg of uranium has 4.26 mols / 2.56 × 10 ²⁴ nuclei 1 kg of deuterium has 500 mol / 3.01 × 10 ²⁶ nuclei / 1.50 × 10 ²⁶ 'reactions'

		some evidence. Level 1 (1–2 marks) Limited description OR Limited calculations There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit		 200 MeV = 3.2 × 10⁻¹¹ J 4 MeV = 6.4 × 10⁻¹³ J Uranium: ~ 10¹⁴ (J kg⁻¹) (actual value 8.2 × 10¹³) Deuterium: ~ 10¹⁴ (J kg⁻¹) (actual value 9.6 × 10¹³) The energy per kg is roughly the same Examiner's Comments This is the second LoR question. This is designed to assess knowledge of the two nuclear energy reactions and to calculate energy release using some given data. The differences between the fission and fusion reactions were generally well answered although many candidates explained differences in design, operation and waste more than the reactions. The similarities were often not as clear however several candidates gave excellent responses in terms of binding energies and mass differences. Candidates were also expected to complete a calculation to show which produces more energy output per kilogram. This is challenging calculation to follow through fully, but most candidates were able to make some attempt, even if it was only converting MeV to J. Only better candidates realised 2 nuclei of deuterium ware used for one fusion reaction. While a somel number of
				Candidates were also expected to complete a calculation to show which produces more energy output per kilogram. This is challenging calculation to follow through fully, but most candidates were able to make some attempt, even if it was only converting
		Total	6	
7 6	i	Proton is repelled (by nucleus) (High-speed) proton can get close to (oxygen) nucleus	B1 B1	Allow 'proton can experience the strong (nuclear) force'
	ii	$E = [0.25 - (2.24 - 2.20)] \times 10^{-11} \text{ (J) or}$ $0.21 \times 10^{-11} \text{ (J)}$ $\frac{\lambda = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{0.21 \times 10^{-11}} \qquad \text{(Any subject)}$ $\lambda = 9.5 \times 10^{-14} \text{ (m)}$	C1 C1 A1	Not 'collide / hit nucleus' Allow 2 marks for 6.9×10^{-14} ; $E = 0.29 \times 10^{-11}$ used Allow 1 mark for a value correctly calculated based on any other incorrect value for E (e.g. 8(.0) × 10 ⁻¹⁴ for $E = 0.25 \times 10^{-11}$ and 5(.0) × 10 ⁻¹³ for $E = 0.04 \times 10^{-11}$)
	ii i	Used in PET (scans)	M 1	Enter text here.

		Any <u>one</u> from: Used to diagnose function of organ / brain / body Detection of cancer / tumour Non-invasive / no surgery / no infection 3D (image)	A1	
		Total	7	
7 7	i	The wave-model cannot explain the cut- off frequency / threshold frequency	B1	Allow reverse argument in terms of photons, e.g. the photon- model can explain the threshold frequency
	i	Nor why the KE of the electrons is dependent on frequency	B1	and why the KE of the electrons is dependent on frequency.
	ii	h = 32 × 10 ⁻²⁰ /5 × 10 ⁻¹⁴	C1	sensible attempt at gradient gains 1 mark
	ii	= 6.4 × 10 ⁻³⁴ (J s)	A1	
	ii i	8.75 ± 0.25 × 10 ¹⁴ (Hz)	B1	tolerance is to within grid square
	i v	$\varphi = 6.4 \times 10^{-34} \times 8.75 \times 10^{14}$	C1	ecf (b)(i)(ii)
	i v	= 5.6 × 10 ⁻¹⁹ (J)	A1	
		Total	7	
7		points from the graph read to the nearest half square	B1	Allow Δ <i>y</i> and Δ <i>x</i> to less than half a small square Ignore POT
8	i	size of triangle is greater than half the length of the drawn line <u>and</u> $\Delta y / \Delta x$ with correct power of ten shown	B1	Note triangle may be determined from read-offs Δx must be greater than 0.3 × 10 ⁶
		$h = \frac{1.2 \times 10^{-6} \times 1.60 \times 10^{-19}}{3.00 \times 10^8} \text{ or } (a)(i) \times 5.333$	C1	
	ï	6.4 × 10 ⁻³⁴ (J s) given to 2 significant figures	A1	
	ii i	steepest or shallowest line that passes through all the error bars	B1	Note steepest line passes inside the lowest error bar (1.76) since it just cuts the bottom of second error bar.
		gradient determined: 1.0×10^{-6} Vm or 1.4	M1	Allow ecf from (iii)
	i v	× 10 ⁻⁶ V m ∆gradient=0.2 × 10 ⁻⁶ V m	C1	Allow ⊿ <i>h</i> = 1.06 or 1.067
		$\frac{\Delta \text{gradient}}{\text{gradient}} \times 100 = 15\%$	A1	Allow 16.7%
		Total	8	
7		energy of blue light / photon of blue light > 2.3 eV / work function	B1	Not blue light has frequency > threshold frequency Or red light has frequency < threshold frequency
7 9	i	or energy of red light / photon of red light < 2.3 eV / work function	B1	
1		Energy of photon is independent of	B1	Allow intensity linked to <u>rate</u> of photons / <u>rate</u> of electrons emitted per second

		intensity		
			B1	Allow <i>E</i> proportional f/E proportional to $1/\lambda$
		(energy of photon given by equation) $E =$		Franciscula Ormanata
		$hf / E = hc/\lambda$		Examiner's Comments
		One photon interacts with one electron		The question is clear that the response needs to be given in terms of photons and energies. Many candidates discussed threshold frequencies, and although often correct, does not answer the question. The link between photon energy and frequency needs to be clear and not just a simple dependency – the simple solution for this is to state the equation. The final marking point requires the candidate to appreciate that only one photon can be absorbed by one electron. Standalone statements such as "there is a 1:1 relation" is meaningless in this context unless qualified. Many good candidates were able to score at least 3 marks on this question and it was clear that this is a well understood aspect. There is sufficient space for a fully clear answer and candidates are always to be reminded of the need for conciseness in such a response.
				Misconception Some candidates missed opportunities for marks by describing the effect wholly in terms of frequency, rather than energy.
				φ = 3.68 × 10-19 (J); E = 6.2156 × 10-19 (J)
				$KE_{max} = 2.5356 \times 10^{-19} (J)$
		$(\phi =) 2.3 \times 1.6 \times 10^{-19} \text{ or}$ $(E =) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{200 \times 10^{-9}}$		$v = 7.46 \times 10^5 \text{ (m s}^{-1}\text{)}$
		$(E =) \frac{320 \times 10^{-9}}{320 \times 10^{-9}}$		Examiner's Comments
		$6.63 \times 10^{-34} \times 3.0 \times 10^{8}$	C1	
		$(\textit{KE}_{max} =) \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{320 \times 10^{-9}} - 2.3 \times 1.6 \times 10^{-19}$	C1	This is a novel development on what is a common calculation of
	ii	2×25255×10-19	UI.	kinetic energy and as such created some challenge for some
	"	$(v=) \sqrt{\frac{2 \times 2.5356 \times 10^{-19}}{9.11 \times 10^{-31}}}$	C1	candidates. Many were able to score the first marking point, either
			01	by converting from eV to joules, or by the calculation of the photon
		(wavelength =) $\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 7.46 \times 10^5}$	A1	energy. Few candidates scored 2 or 3 marks, as generally an error
		(wavelength =) $9.11 \times 10^{-31} \times 7.46 \times 10^{5}$		such as using the speed of light for the electrons occurred.
		wavelength = 9.8×10^{-10} (m)		However, a good number of stronger candidates were able to
				achieve all 4 marks and set out their solutions clearly. It should be noted that the first 3 marks are for setting up the calculations and
				not the evaluations. This is to not penalise candidates too early for
				calculational errors and as always highlights the clear need for
				setting out working as well as possible.
		Total	8	